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A nonlinear filtering methodology has been developed for the numerical solution of the 
convective terms in the Eulerian form of the hydrodynamic equations. FRAM (Filtering 
Remedy and Methodology) introduces a strong local nonlinear dissipation into each of the 
governing equations to dampen non-physical noise due to the properties of the solution 
algorithm selected for the convective terms in the equations. The technique is developed for 
the multidimensional continuity equation and tested on several differencing schemes in both 
one and two spatial dimensions. The technique is general in that there are no undetermined 
coefficients. 

1. INTRODUCTION 

This paper proposes a new approach to solving multidimensional continuity-like 
equations which yield physically reasonable results in regions of large gradients. This 
approach, called Filtering Remedy and Methodology (FRAM), leads to a family of 
Eulerian finite difference algorithms which suppress oscillations of scalar quantities 
such as energy and mass densities and are conservative in nature. As a result, 
problems with large gradients in multiple spatial dimensions can be handled 
particularly well. The method is explicit and involves no problem dependent undeter- 
mined coefficients. While formally reducing the accuracy of the basic solution only in 
regions of large gradients (shock, contact surfaces) the numerical solution is much 
more acceptable on physical grounds and the formal accuracy of the basic algorithm 
selected for the convective terms is retained where the solution is smooth. 

For a large class of hydrodynamic problems the use of higher-order finite 
difference approximations for the convective terms is precluded by the need for 
positivity in the solution for a physically reasonable solution to be obtained. 
However, the use of a positivity preserving algorithm such as upwind differencing is 
precluded by the large diffusive truncation error associated with first-order (in space) 
differencing. Boris and Book [l-3] have introduced a one-dimensional technique 
called Flux Corrected Transport which introduces a strong diffusive term in the basic 
differential equations and attempt to remove as much of this diffusion as possible in a 
flux correcting stage. The flux limiting antidiffusion operator is developed for a three- 
point one-dimensional differencing scheme and when applied to two or more spatial 
dimensions, operator splitting must be used; hence, when applied to two spatial 
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dimensions the basic convection operator is limited to a five-point operator. In 
addition, even in one spatial dimension a phenomena known as clipping can occur, 
which attenuates local maxima in the solution. This occurs because the diffusion 
stage is applied everywhere in the flow field and hence damps the physical solution 
everywhere and the antidiffusion stage when applied cannot correct for damping at a 
local maxima because of the limiting nature of the flux corrector step. Consider a 
region in a flow field where div u < 0. A new maximum in some convected quantity 8 
can occur (i.e., a region where a shock is forming). The diffusion stage carps the 
new maxima in this region which cannot be restored by the autidiffusion stage 
because of the restriction placed on the antidiffusion flux by the limiter. 

More recently Zalesak [4] has introduced a fully multidimens 1 flux tormented 
transport scheme which eliminates the need for operator splitting in multiple spatial 
dimensions. In addition, the new limiter alleviates some of the clipping prob~e~~s 
associated with the old flux limiter. The generalization of FCT by Zalesak allows the 
use of higher-order spatial operators (i.e., greater than three points in one spatiak 
dimension) but as presented in Ref. [4] is limited to systems of equations written in 
conservation form. 

Forester [S] has developed a filtering technique for one spatial d~rne~sio~ which 
introduces a local diffusion into the differencing algorithm to dampen spuri 
oscillations in the solution using higher-order schemes. The algorithm presently 
Forester involves several free parameters that are problem dependent. 
algorithm is based on a noise detection scheme that introduces local dissipation to 
ensure that local extrema are separated by 2n mesh intervals when converged, where 
N is a measure of the characteristic wavelength of the noise associated with a given 
higher-order convective algorithm. The dissipation operator of Forester is a conser- 
vative three-point operator and when applied to a basic ~o~ve~tio~ scheme of greater 
than three points is iterative in nature if absolute monotoni~~~y in the sense of 
Forester (i.e., extrema separated by 2n mesh intervals in one dirnens~Q~~ is to be 
maintained. The algorithms to be presented avoid some of the clipping p~e~orne~a of 
FCT in regions where div u # 0 and are explicit in nature and so are not too co 
implement, In one dimension the second-order scheme of Crow 
with an FCT algorithm and Forester’s algorithm. For prob 
dimensions a filter is developed for a scheme similar to Crowley s second order an 
the fourth-order scheme of Fromm 171. 

2. NONLINEAR FILTERING ALGO~TH~S 

In this section filtering algorithms are developed which effectively remove 
computational noise from higher-order convective differencing schemes. To develop 
the method consider the linear convection equation 
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where u(x, t) is the velocity and x, t are the spatial and temporal coordinates, respec- 
tively, in Eulerian coordinates. In most finite difference approaches to the numerical 
solution of Eq. (1) the solution of the differential equation is expanded locally up to a 
given order in a Taylor series and the resulting set of algebraic equations solved to 
advance the solution in time. Depending on the exact form of the resulting algebraic 
equations the solution procedure can be endowed with such properties as exact 
conservation of the quantity and stability of the solution procedure and convergence 
to the differential equation in the limit of small time and spatial increments. However, 
in most second- and higher-order procedures the solutions exhibit spurious 
oscillations in regions of large gradients which can lead to physically unrealistic 
solutions such as negative mass and energy densities. The reason for this is that in 
regions of large gradients the error terms in the solution procedure become as large as 
the solution itself. If the velocity field is smooth and the initial data continuous, most 
second order and higher schemes do an adequate job of solution. 

However, if the initial data are discontinuous or the velocity field has large 
gradients, conventional solution precedures become inadequate. In many problems of 
physical interest large local gradients can occur such as shock flows, shear flows and 
chemically reacting flows where large gradients in species concentration can occur. In 
such cases conventional solution procedures can lead to unrealistic results. 

In the FRAM approach the continuity equation, Eq. (I), is replaced by a 
convection diffusion-like equation 

$+V+=V.F, 

where F is a strong nonlinear flux introduced locally to damp spurious oscillations 
introduced by the choice of differencing for the V . #u convective term. The 
dissipative flux becomes a function of the local velocity field, the spatial and 
temporal increments as well as the local Lagrangian solution for pure convection. 

The basic idea of the FRAM algorithms can be stated as follows: 

(a) Calculate a provisional advanced time solution for the system of equations 
using a higher-order algorithm. 

(b) Calculate local bounds on the advanced time solution. 
(c) Introduce a strong local dissipation flux into the equations when the 

provisional solution is not within the bounds calculated in step b to reduce the overall 
algorithm to one that is locally monotonic. 

In Step (c) monotomic is taken in the sense of Refs. [l-4], a solution free of 
nonphysical oscillations. The diffusive fluxes become a function of the local velocity 
field and the spatial and temporal increments as well as the local Lagrangian 
solution. 
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Constant Vdocity, Uniform 1-D Mesh 

To illustrate the method consider the one-dimensional linear convention equation 
with a constant in space and time velocity field. In this case Eq. (1) reduces to 

The solution to the above equation is pure translation of the initial data. Equation (3) 
is replaced in the solution procedure with 

where 

The solution procedure is divided into two steps, a pure convection step and a 
diffusion step. For the convection step consider the unstable backward time-centered 
space scheme 

Following Hirt’s 181 heuristic stability analysis the reason for the instability of this 
scheme is the form of the leading temporal truncation error which is of the form sf a 
negative diffusion. This difficulty can be overcome by adding sufficient diffusion 
everywhere to just cancel this truncation error. The differencing scheme then becomes 

which is just Crowley’s (61 second-order scheme in one space dimension, constant 
velocity. While tis dissipation is sufficient to maintain stability for Courant numbers 
uAt/Ax less than 1, it is not sufficient to suppress oscillations in regions of large 
gradients. If Eq. (4) is differenced with sufficiently large diffusion to dampen ail 
spurious oscillations one is led to a diffusion coefficient of 

uAx u2At E=---- 
2 2 (3 

for constant velocity, which results in upwind differencing for Eq. (3). 
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If Eq. (6) is used for the convective step to calculate 
namely, 

a provisional value of dy+r, 

and strong dissipation is introduced locally in the second step only where oscillations 
appear, a more suitable calculation procedure results. 

In the second step the provisional solution is bounded by the local Lagrangian 
solution and dissipation introduced only where the provisional solution exceeds the 
local Lagrangian values. The bounding values of the function are calculated from a 
suitable finite difference approximation to the Lagrangian equation for 4, 

(9) 

which for the constant velocity case reduces to pure translation of the data by udt. 
Hence the Lagrangian update is 

The diffusivity is defined as 

Ej = sj 
UAX uZAt 

2-2 ’ I 
(11) 

where 

sj = 0 for all #min j < $$ G #mm j, 

sj= 1 otherwise, (12) 

where 

are the local bounds on the provisional values of $+l for a three-point convection 
opeator. Therefore, dissipation is introduced locally only where spurious oscillations 
occur. Finally the updated result is given by 

&j+ 1/2 = 4(&j + &j+ 1) maX(aj, Sj+l). (14) 
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FE. 1. Upwind convection of square pulse, $,,, at t = 50 = 5.6. 

FIG. 2. Crowley second-order convection of square pulse, #,,x at t = 50 = 12.2. 
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Figures 1 through 3 show a comparison of the above scheme compared to upwind, 
Crowley second order, t = 250dt for uniform translation of a quare pulse 10 cells 
wide, and amplitude 10, through a background of 4 = 1 with periodic boundary 
conditions. The Courant number was set to 0.2 for all calculations and the spatial 
increment was set equal to 1. 

Table I compares the errors of Crowley second order and Crowley second order 
with FRAM damping at 1 = 50 for the test problem. In the table the error measures 
used are as follows: 

L, = 4 [C (4 - #j)* ] l”> 

L, = max[# - #j], 

where N is the number of mesh points and # is the analytic solution at t = 50 with #j 
the calculated solution at mesh point j. 

In Fig. 4 the Gaussian test problem of Ref. [5] is used to compare the filter of Ref. 
[5] with FCT and FRAM. 

FIG. 3. Filtered Crowley second order, #,,, at t = 50 = 9.6. 
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TABLE I 

Error Measures for Crowley Second Order and 
Crowley Second Order with FRAM 

Crowley 0.53 1 0.110 5.3’7 
Crowley + FRAM 0.328 0.094 4.51 

The test problem was a Gaussian profile with half width 2dx amplitude 15, Ax = I, 
At = 0.1, u = 1.0. Figure 4a is the Forester algorithm applied to Crowley second 
order with filter constants y = 0.1, k = 1, n = 4, m = 2. The results are shown at 
t= 0,20,40,60. Figure 4b shows the results of FCT applied to Crowley second 
order where the flux limiter is that of Res. [l-3] and the low-order scheme is ~~w~~d 
plus l/8 zero-order diffusion. Figure 4c shows the results of FCT using the flux 

ef. [4] (Eqs. (6-14) of Ref. [4]) with the high- and low-order fluxes given 

A .  

l - 
+ 

+ + 
+ 

FIG. 4. Gaussian test probe. (a) Filter of Forester, Ref. [S]; (b) FCT, old limiter; (c) FCT, new 
iimiter. 
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by Crowley and upwind +1/S zero-order diffusion. Figure 5 shows the results of 
FRAM applied to Crowley for this test problem. The results show all three 
algorithms giving comparable results with the new flux limiter of Zalesak performing 
better than that of Refs. [l-3]. Note that both Forester (5) and Zalesak (4) had to 
use very high order basic convection algorithms to obtain satisfactory results for this 
test problem. 

Comparing FRAM and the generalization of FCT (Ref. [4]) for one-dimensional 
convection in a constant velocity field if one chooses the high-order flux to be 
Crowley and the low-order flux to be upwind, the only differences are that Eqs. 
(6)-(13) of Ref. [4] are replaced by the switch function Eq. (12) of the present work, 
and Eq. (6) of Ref. [4] is replaced by C = 0, 1 rather than 0 < C < 1 as in Ref. [4]. 

Variable Velocity, Nonuniform 1-D Mesh 

For a nonuniform velocity field on a staggered mesh with coordinates and 
velocities centered at integer positions 4 centered at half-integer positions the second- 
order scheme of Crowley becomes 

El?2 - #+ l/2 + 1 
At dxj+1/2 M+1~jn+1- 4”wl 

1 ZZ--- 
AX,+ l/2 

(15) 

where 

4; = MY+ l/2 + 4;- 1,213 

AXj=i(Xj+l-Xj-1), 

AXj+1/2=xj+l-Xj, 

9 
w 

1 

0 
U-L 0 

30 
-? 8 o- e- a 

DA 
+” 
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z.?$x 

0 00 x 
vi- + 

+ x x 
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x 
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0 + + x 
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X 

FIG. 5. Gaussian test problem. Crowley Second Order plus FRAM. 
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FIG. 6. Test problem 2. (a) Forester’s algorithm; (b) FCT algorithm of Ref. 141, low-order apwind 
+1/g. (c) FRAM plus Crowley. 

FIG. 7. Test case 2. FCT new limiter, low-order flux upwind. 
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and the filtered scheme becomes 

aj = d [uj”dxj” - (24;)’ At] 

TIME 

FIG. 8. Peak pulse amplitude as a function of time for au/ax < 0. 
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a*d dj+ 112 is given by Eq. (12), and @++,2 in Eq. (I-3) is given by 

the Lagrangian solution. Equation (16) is just the unmodified difference scheme with 
a strong nonlinear damping. While Eq. (16) is formally only first-order in regions 
where the solution is smooth it retains the accuracy of the unmodi~ed scheme. 

In Fig. 6, FRAM, FCT, and Forester’s algorithm are compared for a case where 
div u < 0, or compressing flow. The initial conditions were the same as case I but the 
velocity varied linearly from a maximum of 1 at x = 0 to 0 at the right hand 
boundary x = IOQAx. 

Figure 6a is the Forester algorithm with the same f’iiter constants used in Fig. 4. 
Figure 6b shows the results of FCT using the new limiter of Ref. [4] with the low- 
order scheme being upwind +1/8 zero-order diffusion. Figure 6c shows the results of 
the FRAM algorithm. In Fig. 6 the solid line is the analytic solution and the symbols 
on the computed solutions at t = 20,40, 60, respectively. A more appropriate low- 
order flux for FCT in flows where V . u # 0 is upwind as illustrated in Fig. 7, where 
the results are virtually identical with the FRAM algorithm applied to Crowley 
second order, with the present method requiring fewer machine operations per point 
step than FCT. Fig. 8 shows the peak computed amplitude in the pulse as a function 
of time for the algorithms used in Fig. 6 with the algorithm used in Fig. ‘7 omitted as 
being nearly identical to the present work. 

3. TWO-DIMENSIONAL APPLICATIONS 

The filtering method will now be developed for several differencing schemes in two 
spatial dimensions and results compared to unfiltered calculations and with FCT 
applied to upwind. All equations will use a staggered mesh with velocities centered at 
mesh points and the dependent variable centered at cell centers. The notation i,j will 
denote a quantity centered at the point idx, jAy and i $1, j $ i to denote cell centers, 
a quantity at (i + i) Ax, (j f i) Ay throughout all that follows. 

A two-dimensional generalization of the Crowley second-order scheme that does 
not involve operator splitting is given by 

+ (!?+I,./+ I/Z + 6+1/2,j+ 1 -FY,j+ 112 -FF+l/,,jS = o 

Ax Ay > (1% 

581/44/l-7 
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x (4intV2,j+3/* +~in+l/Z,jt3/2-~in+3/2,j--1/2-giniI,z,j-1/*) 

Au 1 Ui+ I,j+ 1/2AYv 
(20) 

FYt 112,j.k 1 = + (CC+ */2,j+3/2 + #+ 1/2,j+ 112) At 

- vi+1'2J+1Ar2 (#;tl,2,j+3,2 _ #jy+l,2,j+1,2) _ Uf+l12;+IAt2 
2 

' (#Yt33/2,jt3/2 + &3/2,jt1/2 - #in_1/2,j+3/2 - #" r+I/*,j+l:2)] 

X Vi+ 1/2,j+ 1 AX, (21) 

where 

Ui+l,j+l/2 =Z ‘@ i+l,jtl + 'i+l,'j)> etc. (22) 

This scheme is obtained by adding a central difference approximation to the first- 
order time truncation error of centered space backward time differencing to the two- 
dimensional continuity equation and results in a nine-point second-order scheme for a 
constant velocity field. This scheme is stable but not monotonic, if this scheme is 
used to calculate the provisional values of p+r and supplemented with diffusive-like 
fluxes given by 

where 

FDit,,jt,,2=~i+l,j+l/2df Ax Ay 
ci+l,j+1,2 (~:,.312,jt1/2A~~:t1/Z,j+V2) 

Uit 1 ,j+ 112 Vi-t 1 ,jt I/2At 
4 

- - x @ini3/2,it3/2 + Ci"+3/2,jt 112 tin+3/2,j-l1/2 IF+:1/2,j-l1/2) 

AY I 

Ay 
3 (24) 

'i+l,j+1/2 = 
Uitl,j+l/2AX- Uf+l,j+1/2At 

2 2 ’ (25) 
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Wits FDi+ I/z,j obtained by interchanging u, ZJ and i,j in Eqs. (24) and (25) and 

6 itl,j+llZ = maX(4+~2,j+1pp di+3/2,j+lf2)9 

Bi+l/2,j+l = maX(~i+y2,j+1/29 6 it 1/2,j+3/2 I- (26) 

Note when iji+l,j+l,2 = 1 the net flux across face i + 1, j + 1 reduces to upwin 
differencing, a monotonicity preserving flux. In Eqs. (26) the cell switches 6,+ l,z,s+ v2 
are given by 

6i+1/2,j+1/2=o for all #+min < J. <4 gmax 
tt1/2,jtllZ~ z+I/2,jt1/2 \ i+1/2,j+1/23 

Gitl/2,j+1/2 = l otherwise, 

4 *mm 
i+ 1/2,.it 112 = maX@T+3,2,j+ 112~ 4Lk+1/2,jt1/2~ $T-I/*,j+ l/2> 

~~+1/2,jt3/2,$~+11/2,j--1/2), 

4 
*min 
i+llZ,j+1/2 =min@f+3j2,jt~p, #F+ 1/2,jt l/2 9 Qli”- 1/2,.jt 1123 

4 & 1/2,jt3/2~ 4i”t 1/2,j-l/2), 

and 

c#* -f 
rA1/2,jt1/2- itl/Z,jtlfZ (l -A@ * u)it Ip,jt l/*h 

the local Lagrangian solution. 

FIG. 9. Mesh and initial conditions for two-dimensional test problems, dx = 1.0, Ay = 1.0, Al” = 0.2. 

-50 cells 

627) 
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FIG. 10. Contour plot for second-order convective scheme, d,,,,, = 14.5, #,i, = -1.94. 

FIG. 11. Second order with damping, imax = 9.81. 
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FIG. 12. Upwind convection, (e,,, = 5.36. 

FIG. 13. Operator split FCT upwind, drnax = 9.99. 
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The test problem selected for the two-dimensional algorithms was uniform tran- 
slation of a square pulse up the diagonal of a uniform square 50 X 50 mesh with 
dx = Av = 1. The mesh and initial conditions are shown in Fig. 9. The velocity field 
was set to u = o = 1 at all mesh points and the problem run with a timestep of 
At = 0.2 for 150 steps of integration. Figure 10 shows a contour plot of the basic 
convection scheme. The contour intervals are 1.0. Figure 11 shows the filtered 
solution. 

For comparison Figs. 12 and 13 show the upwind solution (i.e., Bi+yz,j+v2 = lVi j) 
and a FCT solution. The FCT algorithm used in Fig. 13 was upwind with the antidif- 
fusive fluxes calculated in an operator split manner using the one-dimensional flux 
limiter of Ref. [l], Eq. (23). The diffusion coefficient used in Eq. (23) of Ref. [I] was 
uAx/2 - uzAt/2 for the fluxes in the x direction and vAy/2 - u*At/2 for the fluxes in 
the y direction. 

4. APPLICATION TO FROMM FOURTH-ORDER CONVECTIVE DIFFERENCING 

In many convectively dominated flows extreme accuracy in the differencing of the 
convective terms is desirable. These areas might include pollutant dispersion and 
weather modeling. These problems have led to the development of several fourth 
order convective schemes. However, as with other higher-order schemes many of 
these schemes exhibit oscillatory behavior in regions of large gradients; hence, some 
sort of smoothing algorithm is desirable. For purposes of illustration a filter for 
Fromm’s [7] fourth-order scheme will be developed. 

The first step convective phase can be written as 

&‘$&,j+ 1/2 = RZl::Zj+ l/2 + iJ’Y,?$ -C’tl’ij+ 1,213 (28) 

where 

~~1::2,j+u*=~~~v*,jiu* + [F~+1/2,j-I;in+1/2,j+lI, 

where the fluxes are given by 

Fi’+ v2,j = [7W’+ y2,j- 1/2 + (by+ 1/2,j+ 1/d 

(29) 

- @i”+l/Z,j-3/2 + #i+1/2,j+3/2)1 a/12 

+ [15(C+:,,2,j-1/2 - 54+*/2,j+1/2) 

- (K+l/*,j-312 - 6+1,2,j+3,2)1 aa'/ 

+ [+Y+l1/2,j-l/* + I:+ l/Z,j+ ll2) 

+ G+:,*,j-3,2 + #+1,2,j+3,*)1 DEW 

+ I-3(YT+U2,j-1/2 -!@+I/Z,j+1/2) 

+ (@+ l/*,j-312 - #Y+ l/*,j+3/2)1 aa’3/24 (30) 
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FIG. 14. Fourth-order unfiltered, &,,,, = 13.6. 

FIG. 15. Fourth-order filtered, (b,,, = 9.50. 
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with 

(31) 

and similar expressions for the fluxes across other faces and at times n -t i. This 
scheme is formally fourth-order accurate in both space and time for a constant 
velocity field. The operator splitting of this scheme makes this a 25-point scheme in 
two dimensions. The filtering approach taken was to add a flux at each face to the 
basic flux which reduces the flux at that face to the upwind flux when the face flags 
were set equal to unity. When a’ = a in Eq. (30) this is the Fromm fourth-order flux 
and when a’ is set equal to unity the resulting flux reduces to upwind. The 
provisional values of the advanced time solution are calculated with a’ = a and 
stored. If a face flag (6) is set to unity, a’ = 1, the net flux is replaced with the 
upwind flux. The bounding function and face flags are set using Eqs. (26, 27) from 
the previous section. Figure 14 shows the same test problem of the previous section 
using the unfiltered Fromm algorithm and Fig. 15 shows the results with the FRAM 
filter applied. 

Note again that the calculational results show no anisotropic effects due to the 
filtering with the filter only damping undesired oscillations in the value of the field 
variable. 

5. SUMMARY AND CONCLUSIONS 

We have developed a family of algorithms that permits the use of higher-order 
differencing schemes for the convective terms in the hydrodynamic equations and 
suppresses spurious oscillations. The technique is conservative and retains the 
accuracy of the basic convective differencing scheme in regions where the flow is 
smooth and introduces dissipation only in those regions where large gradients can 
produce nonphysical oscillations. As can be seen in Figs. 14 and 15 the technique 
presented here does not destroy any of the basic phase properties of the basic 
convection algorithm used. 

While we have not been able to formally prove that the algorithms developed here 
preserve absolute monotonicity in all cases presented here, the observed solutions 
were monotonic to the level of machine roundoff. 

In contrast to FCT algorithms which introduce dissipation everywhere and then 
flux limit in an antidiffusion step the algorithms presented here selectivily introduce 
dissipation only where needed and no antidiffusion step is necessary. 

The algorithms discussed here offer some advantages in terms of computational 
efficiency over FCT algorithms in that the dissipative fluxes need only be calculated 
where needed and the testing necessary to set the cell face flags Sj requires fewer 
operations than the calculation of the flux limiter coefficient of FCT while producing 
comparable results. 
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In a forthcoming paper we will illustrate the method as applied to the gas dynamic 
equations in Lagrangian and Eulerian coordinates, Burger’s equation and cQ~vectio~ 
on a triangular grid. 
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